实时搜索: igbt几个极

igbt几个极

953条评论 4978人喜欢 2614次阅读 223人点赞
IGBT ,CE极击穿,正反向测量都为0,那么能判断G极有没有损坏吗? , 为什么要求IGBT门极充电电流峰值低于门极放电电流峰值,门极电阻怎么计算? ...

abb逆变器igbt模块怎么看出来是g极和发射极: 具体是ABB哪一款IGBT模块型号,可以查到模块的规格书,里面会有封装图及管脚定义说明,标注G的就是门极,E是发射极。详情可参阅IGBT应用技术网http://www.igbt8.com/

电磁炉的整流桥负极到IGBT的G极有个稳压二极管,请问是多大的?: 看了几个电磁炉的图,多数是18V的,还有一个是20V的。
不知你的是什么牌子和型号的?

IGBT CE击穿 G极正常吗: IGBT管CE极击穿,正反向测量都为0,那么能判定它已经损坏,在去判断G极有没有意义了(因为已经不能再使用了)。

电磁炉igbt管控制极上的的电压大概是几伏,是从哪里发过来的呢?要经过哪些电路和元件呢?: 电磁炉igbt管控制极上的电压大概1-2.5V左右(因为驱动芯片型号不一样,驱动电压也有差别),它工作的驱动信号是由驱动电路芯片直接给的(沿IGBT的G极去找,可以看到它是与驱动芯片直接连接的)。

IGBT门极驱动,电阻选择: IGBT门极峰值电流一般通过公式△V/(gint+gext)计算的。
一般驱动电路设计会对门极电阻进行分开设置,如设置开通门极电阻和关断门极电阻
如果要求IGBT门极充电电流峰值低于门极放电电流峰值一般是从IGBT的开关损耗考虑的;IGBT的关断的时候拖尾电流比较长,会引起比较大的关断损耗,增大IGBT的门极放电电流峰值会加快IGBT的关断,减少关断损耗,但这有一个不好的地方就是过快的关断速度会引起关断瞬间IGBT的C、E两端尖峰过大而引起的过压击穿。
所以并不是所有的IGBT驱动电路都是要求IGBT门极充电电流峰值低于门极放电电流峰值,具体要看你的拓扑、IGBT型号选择、散热器散热效果,使用环境如高压或者低压。有些公司设计的驱动电路是IGBT门极充电电流峰值高于门极放电电流峰值主要是折中考虑,因为在高压使用环境中,过快的关断时间引起的过压尖峰是很大的,通过减少IGBT的门极放电电流,增加放电时间,可以减少IGBT的关断应力,但增加IGBT关断损耗,可以通过改善散热器的功能实现。
至于门极电阻怎样计算,一般是参考IGBT说明书给定的参考值,选择参考值附近的电阻,然后通过△V/(gint+gext)计算是否在合理范围内,如过大,但驱动板的驱动电源功率不够,会引起门极驱动信号振荡;充电过快会引起IGBT承受短路过流能力下降;放电过快会引起关断电压尖峰;综合考虑选择合适的电阻

IGBT驱动板,如果自己设计开关电源需要用变压器,请问那个厂家有这种变压器买的?: 开关电源原理及其应用

维修技术培训资料

第一部分:功率电子器件

第一节:功率电子器件及其应用要求
功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。
近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。器件的类型朝多元化发展,性能也越来越改善。大致来讲,功率器件的发展,体现在如下方面:
1. 器件能够快速恢复,以满足越来越高的速度需要。以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。
2. 通态压降(正向压降)降低。这可以减少器件损耗,有利于提高速度,减小器件体积。
3. 电流控制能力增大。电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。
4. 额定电压:耐压高。耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。
5. 温度与功耗。这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。
总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。

第二节:功率电子器件概览
一. 整流二极管:
二极管是功率电子系统中不可或缺的器件,用于整流、续流等。目前比较多地使用如下三种选择:
1. 高效快速恢复二极管。压降0.8-1.2V,适合小功率,12V左右电源。
2. 高效超快速二极管。0.8-1.2V,适合小功率,12V左右电源。
3. 肖特基势垒整流二极管SBD。0.4V,适合5V等低压电源。缺点是其电阻和耐压的平方成正比,所以耐压低(200V以下),反向漏电流较大,易热击穿。但速度比较快,通态压降低。
目前SBD的研究前沿,已经超过1万伏。
二.大功率晶体管GTR
分为:
单管形式。电流系数:10-30。
双管形式——达林顿管。电流倍数:100-1000。饱和压降大,速度慢。下图虚线部分即是达林顿管。

图1-1:达林顿管应用
实际比较常用的是达林顿模块,它把GTR、续流二极管、辅助电路做到一个模块内。在较早期的功率电子设备中,比较多地使用了这种器件。图1-2是这种器件的内部典型结构。

`
图1-2:达林顿模块电路典型结构
两个二极管左侧是加速二极管,右侧为续流二极管。加速二极管的原理是引进了电流串联正反馈,达到加速的目的。
这种器件的制造水平是1800V/800A/2KHz、600V/3A/100KHz左右(参考)。
三. 可控硅SCR
可控硅在大电流、高耐压场合还是必须的,但在常规工业控制的低压、中小电流控制中,已逐步被新型器件取代。
目前的研制水平在12KV/8000A左右(参考)。
由于可控硅换流电路复杂,逐步开发了门极关断晶闸管GTO。制造水平达到8KV/8KA,频率为1KHz左右。
无论是SCR还是GTO,控制电路都过于复杂,特别是需要庞大的吸收电路。而且,速度低,因此限制了它的应用范围拓宽。
集成门极换流晶闸管IGCT和MOS关断晶闸管之类的器件在控制门极前使用了MOS栅,从而达到硬关断能力。
四. 功率MOSFET
又叫功率场效应管或者功率场控晶体管。
其特点是驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。
适合低压100V以下,是比较理想的器件。
目前的研制水平在1000V/65A左右(参考)。商业化的产品达到60V/200A/2MHz、500V/50A/100KHz。是目前速度最快的功率器件。
五. IGBT
又叫绝缘栅双极型晶体管。
这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。
目前这种器件的两个方向:一是朝大功率,二是朝高速度发展。大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。
它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET低。

尽管电力电子器件发展过程远比我们现在描述的复杂,但是MOSFET和IGBT,特别是IGBT已经成为现代功率电子器件的主流。因此,我们下面的重点也是这两种器件。

第三节:功率场效应管MOSFET
功率场效应管又叫功率场控晶体管。
一.原理:
半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。
实际上,功率场效应管也分结型、绝缘栅型。但通常指后者中的MOS管,即MOSFET(Metal Oxide Semiconductor Field Effect Transistor)。
它又分为N沟道、P沟道两种。器件符号如下:

N沟道 P沟道
图1-3:MOSFET的图形符号
MOS器件的电极分别为栅极G、漏极D、源极S。
和普通MOS管一样,它也有:
耗尽型:栅极电压为零时,即存在导电沟道。无论VGS正负都起控制作用。
增强型:需要正偏置栅极电压,才生成导电沟道。达到饱和前,VGS正偏越大,IDS越大。
一般使用的功率MOSFET多数是N沟道增强型。而且不同于一般小功率MOS管的横向导电结构,使用了垂直导电结构,从而提高了耐压、电流能力,因此又叫VMOSFET。
二.特点:
这种器件的特点是输入绝缘电阻大(1万兆欧以上),栅极电流基本为零。
驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。
适合低压100V以下,是比较理想的器件。
目前的研制水平在1000V/65A左右(参考)。
其速度可以达到几百KHz,使用谐振技术可以达到兆级。
三.参数与器件特性:
无载流子注入,速度取决于器件的电容充放电时间,与工作温度关系不大,故热稳定性好。
(1) 转移特性:
ID随UGS变化的曲线,成为转移特性。从下图可以看到,随着UGS的上升,跨导将越来越高。

图1-4:MOSFET的转移特性
(2) 输出特性(漏极特性):
输出特性反应了漏极电流随VDS变化的规律。
这个特性和VGS又有关联。下图反映了这种规律。
图中,爬坡段是非饱和区,水平段为饱和区,靠近横轴附近为截止区,这点和GTR有区别。

图1-5:MOSFET的输出特性
VGS=0时的饱和电流称为饱和漏电流IDSS。
(3)通态电阻Ron:
通态电阻是器件的一个重要参数,决定了电路输出电压幅度和损耗。
该参数随温度上升线性增加。而且VGS增加,通态电阻减小。
(4)跨导:
MOSFET的增益特性称为跨导。定义为:
Gfs=ΔID/ΔVGS
显然,这个数值越大越好,它反映了管子的栅极控制能力。
(5)栅极阈值电压
栅极阈值电压VGS是指开始有规定的漏极电流(1mA)时的最低栅极电压。它具有负温度系数,结温每增加45度,阈值电压下降10%。
(6)电容
MOSFET的一个明显特点是三个极间存在比较明显的寄生电容,这些电容对开关速度有一定影响。偏置电压高时,电容效应也加大,因此对高压电子系统会有一定影响。
有些资料给出栅极电荷特性图,可以用于估算电容的影响。以栅源极为例,其特性如下:
可以看到:器件开通延迟时间内,电荷积聚较慢。随着电压增加,电荷快速上升,对应着管子开通时间。最后,当电压增加到一定程度后,电荷增加再次变慢,此时管子已经导通。

图1-6:栅极电荷特性
(8)正向偏置安全工作区及主要参数
MOSFET和双极型晶体管一样,也有它的安全工作区。不同的是,它的安全工作区是由四根线围成的。
最大漏极电流IDM:这个参数反应了器件的电流驱动能力。
最大漏源极电压VDSM:它由器件的反向击穿电压决定。
最大漏极功耗PDM:它由管子允许的温升决定。
漏源通态电阻Ron:这是MOSFET必须考虑的一个参数,通态电阻过高,会影响输出效率,增加损耗。所以,要根据使用要求加以限制。

图1-7:正向偏置安全工作区

第四节:绝缘栅双极晶体管IGBT
又叫绝缘栅双极型晶体管。
一.原理:
半导体结构分析略。本讲义附加了相关资料,供感兴趣的同事可以查阅。
该器件符号如下:

N沟道 P沟道
图1-8:IGBT的图形符号
注意,它的三个电极分别为门极G、集电极C、发射极E。

图1-9:IGBT的等效电路图。
上面给出了该器件的等效电路图。实际上,它相当于把MOS管和达林顿晶体管做到了一起。因而同时具备了MOS管、GTR的优点。
二.特点:
这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。
它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET略低。
大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。
三.参数与特性:
(1)转移特性

图1-10:IGBT的转移特性
这个特性和MOSFET极其类似,反映了管子的控制能力。
(2)输出特性

图1-11:IGBT的输出特性
它的三个区分别为:
靠近横轴:正向阻断区,管子处于截止状态。
爬坡区:饱和区,随着负载电流Ic变化,UCE基本不变,即所谓饱和状态。
水平段:有源区。
(3)通态电压Von:

图1-12:IGBT通态电压和MOSFET比较
所谓通态电压,是指IGBT进入导通状态的管压降VDS,这个电压随VGS上升而下降。
由上图可以看到,IGBT通态电压在电流比较大时,Von要小于MOSFET。
MOSFET的Von为正温度系数,IGBT小电流为负温度系数,大电流范围内为正温度系数。
(4)开关损耗:
常温下,IGBT和MOSFET的关断损耗差不多。MOSFET开关损耗与温度关系不大,但IGBT每增加100度,损耗增加2倍。
开通损耗IGBT平均比MOSFET略小,而且二者都对温度比较敏感,且呈正温度系数。
两种器件的开关损耗和电流相关,电流越大,损耗越高。
(5)安全工作区与主要参数ICM、UCEM、PCM:
IGBT的安全工作区是由电流ICM、电压UCEM、功耗PCM包围的区域。

图1-13:IGBT的功耗特性
最大集射极间电压UCEM:取决于反向击穿电压的大小。
最大集电极功耗PCM:取决于允许结温。
最大集电极电流ICM:则受元件擎住效应限制。
所谓擎住效应问题:由于IGBT存在一个寄生的晶体管,当IC大到一定程度,寄生晶体管导通,栅极失去控制作用。此时,漏电流增大,造成功耗急剧增加,器件损坏。
安全工作区随着开关速度增加将减小。
(6)栅极偏置电压与电阻
IGBT特性主要受栅极偏置控制,而且受浪涌电压影响。其di/dt明显和栅极偏置电压、电阻Rg相关,电压越高,di/dt越大,电阻越大,di/dt越小。
而且,栅极电压和短路损坏时间关系也很大,栅极偏置电压越高,短路损坏时间越短。

第二部分:开关电源基础

第一节:开关电源的基本控制原理

一.开关电源的控制结构:
一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。
如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F转换、基极驱动、输出整流、输出滤波电路等。
实际的开关电源还要有保护电路、功率因素校正电路、同步整流驱动电路及其它一些辅助电路等。
下面是一个典型的开关电源原理框图,掌握它对我们理解开关电源有重要意义。

图2-1:开关电源的基本结构框图
根据控制类型不同,PM(脉冲调制)电路可能有多种形式。这里是典型的PFM结构。
二.开关电源的构成原理:
(一)输入电路:
线性滤波电路、浪涌电流抑制电路、整流电路。
作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。
1.线性滤波电路:
抑制谐波和噪声。
2.浪涌滤波电路:
抑制来自电网的浪涌电流。
3.整流电路:
把交流变为直流。
有电容输入型、扼流圈输入型两种,开关电源多数为前者。
(二).变换电路:
含开关电路、输出隔离(变压器)电路等,是开关电源电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。
这一级的开关功率管是其核心器件。
1.开关电路
驱动方式:自激式、他激式。
变换电路:隔离型、非隔离型、谐振型。
功率器件:最常用的有GTR、MOSFET、IGBT。
调制方式:PWM、PFM、混合型三种。PWM最常用。
2.变压器输出
分无抽头、带抽头。半波整流、倍流整流时,无须抽头,全波时必须有抽头。
(三).控制电路:
向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。
基准电路:提供电压基准。如并联型基准LM358、AD589,串联型基准AD581、REF192等。
采样电路:采取输出电压的全部或部分。
比较放大:把采样信号和基准信号比较,产生误差信号,用于控制电源PM电路。
V/F变换:把误差电压信号转换为频率信号。
振荡器:产生高频振荡波。
基极驱动电路:把调制后的振荡信号转换成合适的控制信号,驱动开关管的基极。
(四).输出电路:
整流、滤波。
把输出电压整流成脉动直流,并平滑成低纹波直流电压。输出整流技术现在又有半波、全波、恒功率、倍流、同步等整流方式。
第二节:各类拓补结构电源分析
一.非隔离型开关变换器
(一).降压变换器
Buck电路:降压斩波器,入出极性相同。
由于稳态时,电感充放电伏秒积相等,因此:
(Ui-Uo)*ton=Uo*toff,
Ui*ton-Uo*ton=Uo*toff,
Ui*ton=Uo(ton+toff),
Uo/Ui=ton/(ton+toff)= Δ
即,输入输出电压关系为:
Uo/Ui=Δ(占空比)

图2-2:Buck电路拓补结构
在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。输出电压因为占空比作用,不会超过输入电源电压。
(二).升压变换器
Boost电路:升压斩波器,入出极性相同。
利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:
Uo/Ui=1/(1-Δ)

图2-3:Boost电路拓补结构
这个电路的开关管和负载构成并联。在S通时,电流通过L平波,
电源对L充电。当S断时,L向负载及电源放电,输出电压将是输入电压Ui+UL,因而有升压作用。

如何检查IGBT的极性和好坏: 在测量阻值较小的一次中,则判断红表笔接的为集电极(C);黑表笔接的为发射极(E)。 IGBT判断好坏 将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的集电极(C),红表笔接IGBT 的发射极(E),此时万用表的指针在零位。用手指同时触及一下栅极(G)和集电极(C),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。然后再用手指同时触及一下栅极(G)和发射极(E),这时IGBT 被阻断,万用表的指针回零。此时即可判断IGBT 是好的。 IGBT检测注意事项 任何指针式万用表皆可用于检测IGBT。注意判断IGBT 好坏时,一定要将万用 表拨在R×10KΩ挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。

怎样检测变频器逆变模块?:

1、(1)判断晶闸管极性及好坏的方法选择指针万用表R×100Ω或R×1KΩ档分别测量晶闸管的任两个极之间的正反向电阻,其中一极与其他两极之间的正反向电阻均为无穷大,则判定该极为阳极(A)。然后选择指针万用表的R×1Ω档。黑表笔接晶闸管的阳极(A),红表笔接晶闸管的其中一极假设为阴极(K),另一极为控制极(G)。黑表笔不要离开阳极(A)同时触击控制极(G),若万用表指针偏转并站住,则判定晶闸管的假设极性阴极(K)和控制极(G)是正确的,且该晶闸管元件为好的晶闸管。若万用表指针不偏转,颠倒晶闸管的假设极性再测量。若万用表指针偏转并站住,则晶闸管的第二次假设极性为正确的,该晶闸管为好的晶闸管。否则为坏的晶闸管。(2)判断IGBT极性及好坏的方法判断IGBT极性:选择指针万用表R×100Ω或R×1KΩ档分别测量IGBT的任两个极之间的正反向电阻,其中一极与其他两极之间的正反向电阻均为无穷大,则判定该极为IGBT的栅极(G)。测量另外两极的正反向电阻,在正向电阻时,红表笔接的为IGBT的集电极(C),黑表笔接的为IGBT的发射极(E)。判断IGBT好坏:选择指针万用表的R×10KΩ档。黑表笔接集电极(C),红表笔接发射极(E),用手同时触击一下集电极(C)和控制极(G)。若万用表指针偏转并站住,再用手同时触击一下发射极(E)和控制极(G),万用表指针回零,则该IGBT为好的,否则为坏的IGBT。功率模块的好坏判断主要是对功率模块内的续流两极管的判断.对于IGBT模块我们还需判断在有触发电压的情况下能否导通和关断。逆变器IGBT模块检测:将数字万用表拨到二极管测试档,测试IGBT模块c1e1、c2e2之间以及栅极G与e1、e2之间正反向二极管特性,来判断IGBT模块是否完好。以六相模块为例。将负载侧U、V、W相的导线拆除,使用二极管测试档,红表笔接P(集电极c1),黑表笔依次测U、V、W,万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔测U、V、W,万用表显示数值为400左右。再将红表笔接N(发射极e2),黑表笔测U、V、W,万用表显示数值为400左右;黑表笔接P,红表笔测U、V、W,万用表显示数值为最大。各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。IGBT模块损坏时,只有击穿短路情况出现。红、黑两表笔分别测栅极G与发射极E之间的正反向特性,万用表两次所测的数值都为最大,这时可判定IGBT模块门极正常。如果有数值显示,则门极性能变差,此模块应更换。当正反向测试结果为零时,说明所检测的一相门极已被击穿短路。门极损坏时电路板保护门极的稳压管也将击穿损坏。2、你还可以利用参数P372选择模拟运行功能,来检查是否功率器件被损坏,或者触发脉冲的逻辑关系是否正确。3、另外,西门子还专门推出了用于检测IGBT好坏的IGBT测试盒,型号为——6SE7090-0XX84-1FK0。你可以考虑买一个试试。

  • hy是什么药

    企业做钢材销售,年销售额300万,毛利100万,200万的进货有进项票,总共要交多少钱税?: 一般纳税人的增值税应纳税额=销项税额-进项税额=300×16%-200×16%=16万。如果是小规模纳税人,增值税应纳税额=300×3%=9万。如果以上销售额为含税价,那么需进行价税分离。含税价÷(1+税率) ...

    308条评论 3397人喜欢 5459次阅读 591人点赞
  • 12是哪些数的倍数

    梦幻西游开师门店,每天都在亏这么办。每次销售在300万左右,每天早晚补店。24小时开,光交税都交100万多: 你多长时间补一次店 ...

    365条评论 2457人喜欢 3969次阅读 898人点赞
  • 118开关和86哪个好

    小规模纳税人当月开具发票金额超过10万要交多少税?: 2019年1月份,刚颁布了小微企业增值税、所得税新的优惠政策。1、小规模纳税人的增值税税点是3%,包括其他附加,合计税点在3.03%左右。2、对于小规模纳税人而言,月销售额10万以下(含本数),免征增值税。也就是每月...

    399条评论 3073人喜欢 4983次阅读 563人点赞
  • 如何练习英语口语

    一美国人到中国旅游,用20万美元换134万人民币,100万买一单身公寓,34万吃喝玩乐一年。: · 外国人在境内工作、学习时间超过一年的境外个人可以购买符合实际需要的自用、自住的商品房,不得购买非自用、非自住商品房。在境内没有设立分支、代表机构的境外机构和在境内工作、学习时间一年以下的境外个人,不得购买商...

    530条评论 1093人喜欢 1559次阅读 857人点赞
  • pixiv如何

    企业一年润利100万要交多少企业所得税?: 企业一年利润100万要交25万企业所得税。 ...

    208条评论 4557人喜欢 1404次阅读 726人点赞
  • 昆明到哪里治疗白癜风最好

    你好。我买了100万的三者险。我发生交通事故。我全责。对方车辆维修费用可能在30万我需要自己掏钱吗: 第三者的损失,合理的而且在三者险保额内的费用,由保险公司承担。如果不是合理的维修费用,应当由对方自行承担。你不需要承担。保险公司也不会理赔。 ...

    496条评论 2929人喜欢 6041次阅读 768人点赞
  • 1 7的1 3是多少

    第三者责任险是买50万的好,还是100万的好: 建议买100万好,第三者责任险最大的风险是他人人伤,一般发生较大的交通事故,50万金额不太充足。何况50万的保额,保费只差100-200元,大的都支出了,多买一点,图个安心也蛮好~ ...

    389条评论 2659人喜欢 4629次阅读 364人点赞
  • 五岳重汽怎样

    注册资金一百万一年要交多少税: 不需要缴税的。缴税数量的多少取决于公司的收益,及开出去发票的多少按税率缴纳。注册100万的公司,现在也不需要实际到位100万注册资金.而是认缴的。全程我们免费注册公司也是可以的,但是有要求:企业必须按照工商要求,正常...

    790条评论 3434人喜欢 4863次阅读 366人点赞